
Bibliography of Publications Relating to Ptolemy

An Overview of the Ptolemy Project 23 of 23

[33] E. A. Lee and J. Bier, “Architectures For Statically Scheduled Dataflow,” Journal on Parallel and

Distributed Systems, December 1990.

[34] G. Sih and E.A. Lee, “Dynamic-Level Scheduling for Heterogeneous Processor Networks,” Sec-

ond IEEE Symposium on Parallel and Distributed Processing, December 1990.

[35] E. A. Lee and S. Ha, “Scheduling Strategies for Multiprocessor DSP”, Proc. of GLOBECOM,

Dallas, Texas, November, 1989.

[36] J. Bier and E. A. Lee, “Frigg: A Simulation Environment for Multiprocessor DSP System Devel-

opment”, Proc. of Int. Conf. on Computer Design, Boston, MA, October, 1989.

[37] E. A. Lee, W.-H. Ho, E. Goei, J. Bier, and S. Bhattacharyya, “Gabriel: A Design Environment for

DSP”, IEEE Trans. on ASSP, November, 1989.

[38] E. A. Lee, “Recurrences, Iteration, and Conditionals in Statically Scheduled Block Diagram Lan-

guages”, in VLSI Signal Processing III, Ed. R. W. Brodersen and H. S. Moscovitz, IEEE Press,

New York, 1988.

[39] W.-H. Ho, E. A. Lee, and D. G. Messerschmitt, “High Level Data Flow Programming for Digital

Signal Processing”, in VLSI Signal Processing III, Ed. R. W. Brodersen and H. S. Moscovitz,

IEEE Press, New York, 1988.

[40] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow Programs for

Digital Signal Processing” IEEE Transactions on Computers, January, 1987.

[41] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow” IEEE Proceedings, September,

1987.



Bibliography of Publications Relating to Ptolemy

An Overview of the Ptolemy Project 22 of 23

[16] J. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt, “Ptolemy: A mixed Paradigm Simulation/ Proto-

typing Platform”, Proc. of Speech Tech 1991, New York, NY, April 23-25, 1991.

[17] S. Bhattacharyya, “Scheduling Synchronous Dataflow Graphs for Efficient Iteration”, Master’s

Thesis, EECS Dept., Univ. of Calif., Berkeley, May, 1991.

[18] S. Ha, E. A. Lee, “Quasi-Static Scheduling for Multiprocessor DSP”, Proc. of ISCAS, Singapore,

June 1991.

[19] J. Buck, S. Ha, E. A. Lee, and D.G. Messerschmitt, “Ptolemy: A Platform for Heterogeneous

Simulation and Prototyping, Proc. 1991 European Simulation Conference, Copenhagen, Den-

mark, June 17-19, 1991.

[20] E. A. Lee, “Consistency in Dataflow Graphs”, Proceedings of the International Conference on

Application Specific Array Processors, (Barcelona, Spain), IEEE Computer Society Press, Los

Alamitos, California, September 1991.

[21] Soonhoi Ha and E.A. Lee, “Compile-Time Scheduling and Assignment of Dataflow Program

Graphs with Data-Dependent Iteration,” IEEE Transactions on Computers, November, 1991.

[22] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: A Mixed-Paradigm Simulation/Proto-

typing Platform in C++”, Proc. C++ At Work Conference, Santa Clara, CA, November, 1991.

[23] P. D. Lapsley, “Host Interface and Debugging of Dataflow DSP Systems”, MS Thesis, Electronics

Research Laboratory, University of California, Berkeley, CA 94720, December, 1991.

[24] A. Kalavade, “Hardware/Software Codesign Using Ptolemy”, MS Report, Electronics Research

Laboratory, University of California, Berkeley, CA 94720, December, 1991.

[25] G. Sih and E. A. Lee, “List Scheduling Modifications to Account for Interprocessor Communica-

tion Within Interconnection-Constrained Heterogeneous Processor Networks”, Proceedings of the

Int. Conf. on Parallel Processing, February, 1990.

[26] J. Bier and E. A. Lee, “A Class of Multiprocessor Architectures for Real-Time DSP,” Proceedings

of ISCAS 90, New Orleans, May, 1990.

[27] S. How, “Code Generation for Multirate DSP Systems in Gabriel,” MS Report, ERL, EECS

Dept., UC Berkeley, CA 94720, May, 1990.

[28] M. Grimwood, “An Application Using Gabriel: Design and Implementation of a Free-Space Dig-

ital Infrared Communication Link,” MS Report ERL, EECS Dept., UC Berkeley, CA 94720,

August, 1990.

[29] M. Fratt, “Speech Processing Using The Gabriel DSP System,” MS Report ERL, EECS Dept.,

UC Berkeley, CA 94720, August, 1990.

[30] M. P. O’Reilly, “The Design of a 16-QAM Passband Data Modem Using Gabriel, Plan II,” MS

Report, ERL, EECS Dept., UC Berkeley, CA 94720, August, 1990.

[31] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O’Reilly, G. Sih and E.A. Lee, “Gabriel: A Design Envi-

ronment for DSP,” IEEE Micro Magazine, October 1990, Vol. 10, No. 5, pp. 28-45.

[32] J. Bier, S. Sriram and E.A. Lee, “A Class of Multiprocessor Architectures for Real-Time DSP,”

VLSI DSP IV, ed. H. Moscovitz, IEEE Press, November, 1990.



Bibliography of Publications Relating to Ptolemy

An Overview of the Ptolemy Project 21 of 23

F. Bibliography of Publications Relating to Ptolemy

[1] E. A. Lee, “Multidimensional Streams Rooted in Dataflow”, EECS Dept., UC Berkeley, August

1, 1992. submitted to IFIP Working Conference on Architectures and Compilation Techniques for

Fine and Medium-Grain Parallelism, Orlando, FL, January, 1993.

[2] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a Framework for Simulating and Pro-

totyping Heterogeneous Systems”, to appear in International Journal of Computer Simulation,

special issue on “Simulation Software Development,” 1992.

[3] J. Pino, S. Ha, E. Lee, J. Buck, “Software Synthesis for DSP Using Ptolemy”, invited paper in the

Journal on VLSI Signal Processing, special issue on “Synthesis for DSP”, to appear.

[4] S. Bhattacharyya and E. A. Lee, “Scheduling Synchronous Dataflow Graphs for Efficient Loop-

ing,” to appear in J. of VLSI Signal Processing, 1992.

[5] Gregory Walter, ATM, Speech Coding, and Cell Recovery, MS Report, December, 1992.

[6] J. Buck and E. A. Lee, “The Token Flow Model,” presented at Data Flow Workshop, Hamilton

Island, Australia, May, 1992.

[7] A. Kalavade and E. A. Lee, “Hardware/Software Co-design Using Ptolemy — A Case Study,”

Proc. of the IFIP Int. Workshop on Hardware/Software Co-design, Grassau, Germany, May 19-

21, 1992.

[8] S. Ha, “Compile-Time Scheduling of Dataflow Program Graphs with Dynamic Constructs,”

Ph.D. Dissertation, EECS Dept., University of California, Berkeley, CA 94720, April 1992.

[9] E. A. Lee, “A Design Lab for Statistical Signal Processing,” Proceedings of ICASSP, San Fran-

cisco, March, 1992.

[10] G.C. Sih, E.A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-Constrained Het-

erogeneous Processor Architectures”, to appear, IEEE Trans. on Parallel and Distributed Sys-

tems, 1992.

[11] E. A. Lee, “Static Scheduling of Data-Flow Programs for DSP,” in Advanced Topics in Data-Flow

Computing, ed. J.-L. Gaudiot and L. Bic, Prentice-Hall, 1991.

[12] E. A. Lee and J. C. Bier, “Architectures for Statically Scheduled Dataflow”, reprinted in Parallel

Algorithms and Architectures for DSP Applications, ed. M. A. Bayoumi, Kluwer Academic Pub.,

1991.

[13] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate Signal Processing in Ptolemy”,

Proc. of the Int. Conf. on Acoustics, Speech, and Signal Processing, Toronto, Canada, April,

1991.

[14] E. A. Lee, “Consistency in Dataflow Graphs”, IEEE Transactions on Parallel and Distributed

Systems”, Vol. 2, No. 2, April 1991.

[15] Gilbert C. Sih, “Multiprocessor Scheduling to Account for Interprocessor Communication”,

Ph.D. Thesis, ERL, UC Berkeley, CA 94720, April 22, 1991.



Representative Applications

An Overview of the Ptolemy Project 20 of 23

E.2 Wireless Networking

The wireless work is collaborative with Profs. Kahn and Linnartz, and is attempting to

achieve high speed wireless access to the network. We are using Ptolemy as a basis for the

fading channel, modulation, PLL simulations. An important capability of Ptolemy is to model

at the timing and circuit simulation levels, so we can study interactions between circuit

designs (preamps etc.) and other parts of the system.

E.3 Cell-Relay Networks

To demonstrate a large heterogeneous simulation, we have constructed a full cell-relay (ATM)

network. While it is simplified in some respects, it includes the three key elements: cell-relay

transport (DE domain), call processing (MQ domain), and video codec (SDF domain). CPE’s

set up random calls through the network, which are routed by the call processing, and signal

processing based CPE’s transmit packets through the network. The 2x2 switching elements in

the Batcher-Banyon switches are modeled in SDF, including their routing tables, and the inter-

face of these routing tables to the MQ call processing was an interesting challenge.

Currently another project is focusing on the buffering and associated control at the interface

between the synchronous signal processing world and the asynchronous transport: the cell

assembly operation. As a design exercise, we are carrying this design down to the board level,

utilizing the DE and Thor domains of Ptolemy. What is interesting here is the ability to model

the interaction of this board with the network (congestion control) and signal processing (flow

control) in the context of the hardware model.

E.4 Video Signal Processing

We are developing models in Ptolemy for standard video signal processing algorithms (DCT

etc.). Later this will be merged with the networking simulations (cell relay) to study issues in

the interaction between transport and signal processing for multipoint and interactive video

services. For example, the compression must be designed taking into account the cell-loss

mechanisms, and also must accept flow-control directives from the network.

E.5 Power Networks

Prof. Varaiya and Wu at Berkeley are using Ptolemy for the modeling of the communication

and control infrastructure of an electric power network. Theirs is actually the first large-scale

communication system modeling effort in Ptolemy. Subsequently they plan to model the

power grid itself, and then connect these two heterogenous large-scale systems.



Representative Applications

An Overview of the Ptolemy Project 19 of 23

run any application. Instead of functional blocks, it has a suite of generic blocks, each with a

parameter that specifies its execution time. Furthermore, the target is parameterized so that we

can modify the interprocessor communication times and test the efficacy of the scheduler. The

value of each parameter used to generate figure 12 is given below:

• Runtimes of the blocks: ranging from one time unit to five time units.

• Time to send one data packet: one time unit.

• Time to receive one data packet: one time unit.

• Communication interferes with processing (no separate IPC unit).

• Number of processors: 4

• Processors contend for communication resources.

A Gantt chart is shown below the block diagram. A vertical line in the Gantt chart causes the

blocks that fire at that time to be highlighted. Note that there is only sufficient concurrency in

this test program to use three of the four processors, so the scheduler does not make use of the

last processor.

All of the parameters can be modified, and the scheduler will adapt. For instance, if the com-

munication time is increased from one time unit to 10, say, we find that the scheduler maps the

entire application onto a single processor. Communication is too expensive to justify parallel-

izing such a simple application.

The first two schedulers support only the SDF model of computation. A third scheduler has

been developed that supports the DDF model of computation. All of these schedulers will be

compatible with any code generation domain compatible with these models of computation.

Hence, they can be used to generate parallel programs in any language.

E. Representative Applications

Ptolemy is currently be used for a number of applications, at Berkeley and elsewhere. We will

briefly describe the current activity at Berkeley.

E.1 Signal Processing

A wide variety of signal processing applications have been developed using Ptolemy, includ-

ing several adaptive filtering applications, power spectrum estimation, several parametric and

waveform coding techniques based on linear prediction, communication channel modeling,

digital communication receivers, beamforming, digital filter design, chaos simulations, phase-

locked loops, image coding, and music synthesis. Many of these applications are distributed

as with the Ptolemy code as demonstrations. Ptolemy is also being used to teach both graduate

statistical signal processing and undergraduate digital signal processing.



Parallel Programming using Ptolemy

An Overview of the Ptolemy Project 18 of 23

D.2 The role of graphics in parallel programming

Compilation of parallel programs and programmer visualization of parallelism both demand

the same missing ingredient: elegant representations of programs that are compatible with

parallel computing. This need not mean new languages, but it almost certainly means new

program structuring. Our experience indicates that combinations of concise, textual represen-

tations of arithmetic and sequential operations with graphical representations of higher-level

program structure can be effective, at least in the domain of signal processing.

D.3 Current Status of Parallel Programming Using Ptolemy

Three parallel schedulers have been built into two generic code generation domains in

Ptolemy. By “generic domains” we mean domains that form a base class for specific code gen-

eration domains. Hence, the schedulers can be used for a variety of targets without any

changes. An example program in such a domain is shown in figure 12. This domain consists

only of base classes to be used in actual code generation domains, and hence does not actually

FIGURE 12. A program in a generic code generation domain,
and a parallel schedule generated for that program.



Parallel Programming using Ptolemy

An Overview of the Ptolemy Project 17 of 23

A practical application for the latter capability is the design of a multimedia workstation,

where programmable hardware (FPGAs) might be used to interface to a variety of audio and

display devices, one or more programmable DSPs might be used to manage encoding and

decoding of real-time signals, a processor running a real-time O/S might handle all real-time

control, and a processor running Unix might manage the interaction with the user. Ptolemy

would unify this highly heterogeneous environment.

D. Parallel Programming using Ptolemy

Parallel programs are not so much “written” as “designed”. Writing is sequential, left-to-right,

top-to-bottom, while design builds relationships between parts. Even with ordinary structured

and object-oriented programming, the writing metaphor is weak. It requires augmentation

with specialized text editors and hypertext facilities such as class browsers and tag managers.

But the breakdown of the metaphor is complete with parallel programming.

A “design” makes a whole from parts without any implication of sequentialism. In parallel

programs, the parts may be processing elements or concurrent processes, but far better, they

should be parts of the application being designed. The interaction between these parts, and

between these parts and a user, is after all what concerns the designer (the “programmer”).

D.1 Requirements of parallel programming

Parallel programming requires visualizing the parallelism in an application. This need not be

any more unnatural than visualizing parallelism in, say, a circuit schematic. Half-hearted

enhancements to traditional languages, like “for-all” constructs, hardly satisfy the need, since

they only hint to a compiler of some inner-loop parallelism that might be exploited. Commu-

nicating sequential processes, such as those supported by the Occam language, in principle

allow more flexibility, but they leave too much of the scheduling work to the programmer.

Some attempts to automatically exploit parallelism have met limited success either because

they started with sequential languages, or because they were too specialized. Specialized tech-

niques, such as automated mapping onto systolic arrays, can be effective for specific algo-

rithms, but few if any applications consist entirely of a single algorithm. To be useful, these

techniques have to be combined with others into an environment that achieves generality

through a suite of specialized methods.

Parallel programming also requires fundamentally new compiler and debugger technology

where the focus is less on code generation and more on scheduling. By “scheduling”, we

mean partitioning, mapping, ordering, and timing of tasks on processors. It also includes rout-

ing of communications. The compiler should assume responsibility for as many of these as

possible, but with hooks for the programmer to tune the schedule if desired. Dataflow

machines have shown that it is not reasonable in most cases for run-time hardware to assume

such responsibility. And the limited penetration of today’s commercial parallel machines has

shown that programmers are not willing to assume such responsibility themselves.



Multi-Paradigm Computing

An Overview of the Ptolemy Project 16 of 23

Algorithm Description

Target Hardware

Partition, Schedule and Generate DSP Assembly Code

Thor

DSP 56001 CODE GENERATOR

FIGURE 11. A hardware design (bottom) containing programmable DSPs can be
developed together with the software (top) that will run on the DSPs. This figure shows
the top level only of a telephone channel simulation algorithm (top window) being
mapped onto a board design with two Motorola DSP56001 DSPs.



Multi-Paradigm Computing

An Overview of the Ptolemy Project 15 of 23

are needed by the destination equipment. Above this network model is a highly simplified sig-

nal processing system making use of the network. A sinusoid is generated and packetized, one

sample per packet, and launched into the network. At the receiving end, packets are used to

reconstruct the sinusoid at the same sample rate. The packets are used in the order of arrival,

so the samples of the sinusoid get randomly scrambled, as shown in the upper plot. Real-time

constraints are modeled, so if packets do not arrive in time, earlier packets are re-used.

In practical applications with similar structure, both the network model and the signal process-

ing will be much more elaborate. Ptolemy is currently being used to evaluate video encoding

algorithms for transmission over ATM (asynchronous transfer mode) networks, as shown in

figure 6.

C.2 Hardware/Software Codesign

Most electronic systems mix custom circuit designs with programmable commodity parts.

Ptolemy supports such designs as a unit, since using the various domains described above, all

parts of the system can be modeled. For example, the Thor domain can be combined with a

code generation domain to design boards that mix custom hardware with programmable

DSPs. Since the hardware and software are both modeled within the same software frame-

work, a designer can easily explore tradeoffs between hardware and software implementations

of various functions.

An example of such a design is shown in figure 11. The top window shows the top level only

of an algorithm that simulates the impairments of a telephone channel. This algorithm is fairly

complicated, including linear and non-linear distortion, frequency offset, phase jitter, and

additive Gaussian noise. The design is built in a code generation domain compatible with the

SDF model of computation. The bottom window shows a hardware design containing two

programmable DSPs communicating through a dual ported shared memory. This hardware

might be used to implement the telephone channel simulator for production-line testing of

voiceband data modems.

The design shown in figure 11 is one of many that could accomplish the stated objectives.

Using Ptolemy, the entire design, ranging from algorithm development to circuit design, can

be carried out within a unified environment. This enables exploration of many design alterna-

tives before resources are committed to hardware prototyping.

C.3 Multi-Platform Implementations1

The interface between domains in Ptolemy is being generalized to permit different parts of a

Ptolemy system to run on distinct hardware platforms. A simple form of this distributes

Ptolemy simulations among multiple Unix workstations. A more elaborate form spawns

stand-alone C++ processes that execute on remote platforms, communicating with the

Ptolemy process through a network, although this has not yet been demonstrated. A still more

elaborate form generates code for non-Unix machines, in C or assembly language, downloads

the code, and manages the communication between system components transparently.

1. This section describes work in progress, not capabilities in the version of Ptolemy currently being distributed.



Multi-Paradigm Computing

An Overview of the Ptolemy Project 14 of 23

ting data, speech, images, and video, requires consideration of all these issues. For example,

to carry real-time speech, an encoding algorithm that tolerates lost or delayed packets may be

required. The encoder may also be required to monitor the network for congestion, and adapt

its compression ratio accordingly. A video transmission network may need to perform video

compositing within the network, rather than just at the terminals.

Such multimedia designs are fundamentally heterogenous. Network design, which is naturally

done with the DE domain in Ptolemy, must be combined with signal processing design, which

is most naturally accomplished in the SDF or DDF domains.

A simplified example that combines the SDF and DE domains is shown in figure 10. In this

example, the lower diagram models a highly simplified packet-switched communication net-

work, in which packets randomly traverse one of two paths. The upper path has no delay. The

lower path has random delay. At the receiving end, a queue stores incoming packets until they

FIGURE 10. A heterogeneous application in Ptolemy.


